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RELATING CONIC-SECTION ORBITAL POSITION, VELOCITY,
AND TIME FROM PERIAPSIS AS DIMENSIONLESS QUANTITIES

*
J. Phil Barnes

Keplerian orbital characteristics are presented
in compact mathematical and graphical form by
non-dimensionalizing orbital radius, velocity,
energy, and time from periapsis. The auxiliary
anomalies are used to obtain the dimensionless
time. The accuracies of the eccentric and hyper-
bolic anomalies are confirmed, particularly at
near-parabolic eccentricity, by numerical solu-
tion of Kepler's problem. Finally, the dimen-
sionless groups are applied toward analysis of
a lunar free-return trajectory via the patched-
conic method with the aid of Cartesian vector
operations. '

INTRODUCTION

A Keplerian orbit (Figure 1) has the shape of a conic sec-
tion. The orbit is defined by its eccentricity (e), angular
momentum (h) per unit satellite mass, and central body gra-
vitational parameter (M). The orbital radius (r), velocity
(v), and time (t) from periapsis can be multiplied by
various powers of (i) and (h) to form dimensionless groups
which, along with flight-path angle (Y), depend only on the
eccentricity and true anomaly (8). The orbital energy (&)
per unit satellite mass can also be non-dimensionalized.

Figure 1
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The dimensionless groups, derived in Appendix 1, are summa-
rised as follows, using upper-case letters (R,V,E, and T) to
designate non-dimensionality:

%
Senior Engineer, Northrop Aircraft Division
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Introduction, continued

Radius Group R = r,u/h2 = 1/(1+ ecos9)

Velocity Group V=vh/u = \/1+e2+2ecose
Flight-Path Angle 7 = cos *(1/RV)

Energy Group E = Shz/u2 = %(Vz)—(l/R) = %(ez—l)

Y

Time Group T 5
0(1l+ ecos®)

tn2/21r h3 = (1/2#)‘

Since the time-group integral cannot be evaluated by ordi-
nary means (unless e=1), the eccentric anomaly (€) and hyper-
bolic anomaly (F) were devised (Ref.l) as auxiliary anoma-
lies which can be integrated. For eccentric, parabolic, and
hyperbolic orbits, the time group is respectively as follows:

* After this paper was written, it was
found that the time group can be
integrated, as in Thomson's book, 2.3/2
"Introduction to Space Mechanics," 2T (1-e7)
Dover, 1986, page 73.

For e<l, T = €-esiné€

—
il

For e=1, 3tan(%e)+tan3(%6)

12w

For e>1, T

e sinh(F) - F
3/2

27 (e2-1)

With the auxiliary anomalies (¢, %6, or F) the solution of
Kepler's problem (to determine §, given T) is iterative.
Also, when the eccentricity is near unity the iterative solu-
tions are slow to converge and may be subject to error when
(T) is evaluated in single precision. As an alternate, non-
iterative solution to Kepler's problem, the dimensionless
time derivative (d8/dT) can be integrated numerically:

46/dT = 27 (1+ e cos 8) GzEz(dB/dT)Aﬂ?
The numerical integration can be used to test the acecuracy
of (T) as determined by the auxiliary anomalies. Also,
numerical integration can be used as an alternative to the
iterative methods when they are slow or unable to converge.

Regardless of how the time group (T) is obtained, the dimen-
sionless groups (R,V,E, and T) offer compact presentation of
orbital characteristics, as well as efficient analysis of
conic and patched-conic orbits,

(2)
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PRESENTATION OF ORBITAL CHARACTERISTICS

The orbital shapes can be compared by plotting dimensionless
Cartesian coordinates, X=Rcosf@ and Y=Rsin§, as shown in
Figure 2. As might be expected, the circular orbit has a
radius group of unity. At the semilatus nodes, all conic
orbits have a radius group of unity. By scaling up the X-Y
coordinates by the factor (l+e), the orbits can be compared
with common periapsis as shown in Figure 3. '

The velocity group, as well, is unity in a circular orbit
(Figure 4)., In eccentric orbits, the velocity group is (l+e)
at periapsis and (l-e) at apoapsis. The direction of the
velocity vector is given by the flight-path angle (7), which
varies with (e,0) as shown in Figure 5. In hyperbolic orbits
(Figure 6) the velocity group is again (l+e) at periapsis.
The flight-path angle is linear with true anomaly for a
parabolic orbit (Figure 7).

For eccentric, parabolic, and hyperbolic orbits the dimen-
sionless time from periapsis (time group, T) is presented

in Figure 8., Note that the dimensionless period of the
circular orbit is unity. The time group arbitrarily contains
(27) in its definition, allowing convenient calcellation of
the (27) when converting radians to degrees in numerical or
iterative solutions to Kepler's problem.

For eccentric orbits, the period (7) and period group (P)
are related as follows:

2,3/2

P =Tu?/27h = 1/(1-e?)
Figure 9 relates the trueianomaly to the time from periapsis
as a fraction (t/7) of the period.

In hyperbolic orbits (Figure 10) the time group is negative
approaching periapsis. Figures 8 or 10 can be used for
approximate graphical solution of Xepler's problem. Given
an initial true anomaly (#1) alcong with the eccentricity,
the initial time group (Ty) can be obtained graphically.
Then, given (h) and (u), the time interval (tg-tq1) is non-
dimensionalized to form (T2-Tq). Then, given the final time
group (T2), the final true anomaly (69) is obtained graphi-
cally, :

Figures 8 or 10 also offer a close first guess for the final
true anomaly in the iterative solution to Kepler's problenm,
as illustrated in Appendix 2. Since the iterative solutieon
uses (e), (T), and the auxiliary anomaly to determine (8),
the velocity group (V=vh/p) is ideally suited for determi-
ning the dimensional velocity (v):

v = (u/h)\/1+e2+2ecose
(3)
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Figure &

VELOCITY GROUP

IN ELLIPTICAL ORBITS
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VELOCITY GROUP IN HYPERBOLIC ORBITS
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Figure 8
DIMENSIONLESS TIME FROM PERIRPSIS IN KEPLERIAN ORBITS
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Figure 10

DIMENSIONLESS TIME FROM PERIAPSIS IN HYPERBOLIC ORBITS
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NUMERICAL SOLUTION OF KEPLER'S PROBLEM

The d1mens1onless time (T) from perlap51s to any true anomaly
(@) is given by: 46
T=tp /21rh (1/21:‘)

(1+ ecose)

The integral can be evaluated numerically, with Simpson's
Rule for example, to determine (T), given (e) and (8). The
result can be used to check the accuracy of (T) as deter-
mined by the auxiliary anomalies. Alternatively, the equation
above can be differentiated and rearranged to yield the
dimensionless time derivative:

d6/dT = 2 m(1+ ecose)2

This derivative can be used to numerically solve Kepler's
problem with a constant or variable time group increment (AT).
In Table 1, the Runge-Kutta method (Appendix 3) was used with
variable (AT) ad justed to advance roughly 1°~(8;,1-6;) in

true anomaly at each step:

AT = Ty -T; = 1° (27/360°) /[2m(1+ e cos,)?]

The actual advance (0it+1-64) was calculated in double preci-
sion with the Runge-Kutta method. Then, given (0), the auxi-
liary anomaly was used to calculate (T) in double precision,
thereby obtaining a comparison of the methods at each step.

(8)
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Table 1
Time Group Comparison
Double Precision

9° T =tpuZ/amhd
TRUE NUMERICAL &  AUXILIARY
e ANOMALY | INTEGRATION  ANOMALY
0.6 44.8852 | .0527286 0527286
0.6 89.5376 | .1377633 .1377632
0.6 178.619 | .9525895 .9525893
0.6 181.619 | 1.004654 1.004654
0.99  44.8450 | .0350285 .0350284
0.99  89.3285 | .1048998 .1048998
0.99  136.083 | .5895153 .5895152
0.99  169.745 | 21.21108 21.21114
0.99  180.815 | 200.6112 200.6123
0.999 44.8443 | ,0347316 .0347316
0.999 .137.975 | .6735287 .6735285
0.999 170.263 | 40.55587 40.55624
0.999 176.669 | 615.5090 615.7290
0.999 178.914 | 2885.342 2888.557
0.999 180.767 | 7605.110 7608.113
1.0 59.7174 | .0507011 .0507011
1.0 123.518 | .319335% .3193350
1.0 165.897 | 14.65918 14.65920
1.0 174.244 | 210.3356 210.3592
1.001 59.7172 | .0506562 .0506562
1.001 123.516 «3195205 «3195204
1.001 165.870 | 15.13996 15.13998
1.001 170.160 | 46.13354 46.13406
2.0 59.6042 | .0244402 .0244402
2.0 93.7751 .0778429 .0778429
2.0 116.732. | .8392446 .8392227
X VARIABLE TIME GROUP INCREMENT AT=1°/(d8/dT)

The results of the numerical integration are seen to agree
with those of the auxiliary anomaly generally to five or more
significant digits, except at the far side of a highly-eccen-
tric orbit (e=~0.999, #~180°) where the methods differ at the
fourth significant digit. All computations in Table 1 are
non-iterative. The computations using the auxiliary anomaly
were non-iterative because (8) was specified. If, however,
(T) were specified and (@) were to be iteratively determined,
convergence on () may not be reliable when using the auxil-
iary anomaly at near-parabolic eccentricity. In this case,
numerical integration offers a reliable, non-iterative solu-
tion for (@) accurate to a small fraction of 1°.

When computations are limited to single precision, the numeri-
cal integration is frequently more accurate than the auxiliary
anomaly at near-parabolic eccentricity. Table 2 presents an
accuracy comparison, using the auxiliary anomaly in double
precision as the standard of accuracy, and dots to indicate
the more accurate values of (T).

(9)
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TABLE 2
TINE GROUP ACCURACY COMPARISON
SINGLE PRECISION

6° , T =tu¥amwhd
TRUE NUMERICAL ¥ AUXILIARY EXACT 3%
e ANOMALY | INTEGRATION ANONALY

0.99  9.9926 0.007044 0.007044 0.007044
0.99  59.718 0.051152 o 0.053148 0.051152
0.99  120.62 | 0.281475 s 0.281471 0.281469
0.89  175.12 67.19261 e 67.19213 67.19140
0.99  179.80 172.7628 . 172.7603 172.7578
0.999  9.9926 0.006981 o 0.006978 0.006981
0.999 59.717 0.050745 o 0.050748 0.050745
0.999 119.63 0.271576 o 0.271621 0.271571
0.999  170.26 40.52766 o 40.53115 40.52691
0.999 178.15 1678.677 e 1680.191 1680.005
0.999  180.76 7596.878 e 7598.53% 7599.068
1.0 29.931 0.021778 0.021778 0.021778
1.0 90.305 0.106958 e 0.106957 0.106957
1.0 150.31 1.725030 o 1.724981 1.724975
1.0 175.71 509.8093 e 509.9658 509.9817
1.04  4.9982 0.003440 o 0.003383 0.003440
1.01 - 29.931 0.021567 0.021675 0.021567
1.01  90.300 0.106311 o 0.10631 4 0.106310
1.01 150.24 1.840474 o 1.840397 1.840426
1.01  170.84 289.2851 » 289.7937 289.7665
1.001 9.9926 | 0.006967 0.006961 0.006967
1.001 29.931 | 0.021757 e 0.022442 0.021757
1.001  60.707 0.051882 0.052735 0.051882
1.001  90.305 0.106893 o 0.107820 0.108892
1.001  120.60 0.282638 0.283232 0.282631
1.001  150.30 1.735943 1.736358 1.735899
1.001  170.15 46.09414 o 46.09236 46.09021
1.001  175.49 693.5461 » 694.2402 693.9728

X VARIABLE TIME GROUP INCREMENT
X AUXILIARY ANOMALY IN DOUBLE PRECISION

ORBIT ANALYSIS WITH THE DIMENSIONLESS GROUPS

To illustrate the application of the dimensionless groups, a
lunar free-return trajectory (Figure 11) will be analyzed
with the patched-conic method (Ref. 2). The free-return tra-
jectory is useful in the event that the decelerating impulse
is not available at perilune, because lunar gravity will then
swing the spacecraft into a trajectory returning to the same
perigee altitude as the outbound trip.

The patched-conic method can be used for approximate analysis
of the free-return trajectory. With this method, the trajec-
tory is analyzed by patching together the various 2-body
(conic) orbits, neglecting the effects of third bodies. In
the lunar free return trajectory, only the earth's gravity
G@ 398601 km3/s2) is considered until the spacecraft enters
the lunar sphere of influence at a distance (rip=66300 km)
from the moon. Within the lunar influence sphere (Um=4903
km /s ), the effects of the earth on the moon-relative tra-
jectory are neglected. Furthermore, the effects of the sun
are neglected in both patched orbits.

(10)
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Figure 11
Lunar Free-Return Trajectory
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The spacecraft is injected at point (1) from a geocentric
parking orbit of 300 km altitude into a highly-eccentric
transfer crossing in front of the moon's path. At point (2)
the spacecraft enters the lunar influence sphere, beginning
its moon-relative hyperbolic encounter. The spacecraft reaches
perilune &t point (3) and then leaves the lunar influence
sphere at point (4). The objectives are to determine the in-
jection speed (vgi), phase angle (fp1), time (ti3) to peri-
lune, and perilune altitude, all such that the earth-relative
eccentricity and energy of the return trip match those of the
outbound trip.

The analysis begins as recommended in Ref. 1, where both (vsl)
and the intercept angle (f) are estimated. These estimates are
later revised if the desired trajectory is not observed. From
(vg1) and (rgy1) the earth-relative angular momentum (hjyg) is
determined. Then the velocity group (Vg;) and eccentricity
(elz) are determined. From (8, rypo, and rj,o) the law of
cosines is applied to determine the radius (rgg). Then the
radius group (Rgp) and true anomaly (fg2) are calculated:

hyy =1 v (at periapsis)
Vs1 = Vo1 Pip /He
€19 = Vsl =1 (at periapsis)

2
Ryo = Taa Me/ By,

(11)
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Bg2 = COS—l[(l/elz)(l/Rsz—l)]

Next, the velocity group (Vgo), velocity (vgp), flight-path
angle (Yg2), and velocity vector components are calculated
(Refer to Figure 1la):

9 Figure 1lla
Vg2 =\/1l+e197+2 elzcosesz Velocity
v n y Components
v = &,
52 s2Mg/ 12 v
-1 V,J/’\
'Ysz = CO08 (1/R52V52) K : \‘
Y \' /\”’Vr
- . = ; )
Vs20 = Vgg €0SY¥555 Vs2r T Va2 31anz fe
. X
Vsax = Vsar €086y - Vs26 Sines2
Vs2y = Vsor Sin®gp + vgoyg cOsEy,

To determine the lunar velocity vector (sz) the law of
sines is used to determine the angle (&), which is then
subtracted_from (fg32) to obtain (fy9). Then the x-y compo-
nents of (vpo) can be determined. The lunar velocity vector
is subtracted from the spacecraft velocity vector to obtain
the relative velocity vector (Vszm) with which the spacecraft
begins its hyperbolic passage., The lunar influence radius,
as a vector g?imz), is calculated by subtracting the vector
(;32) from (rpo) using x-y components (r cos@) and (r sing).
Finally, the moon-relative angular momentum is found by the
vector cross product:

vectorsy th =T, o5 X Veom

scalar: h,, = “im2x 's2my ~ Tim2y Vs2mx

The scalar angular momentum (hps) will be negative, provided
the spacecraft passes in front of the moon. Taking note of

the sign of (h24) for use in subsequent vector rotation opera-
tions, its absolute value is used for all remaining calcula-
tions. The moon-relative radius group, velocity group, energy
group, and eccentricity are as follows: : ' '

2
RsZm = rithJh24

VsZm = Vsom h24/#n1

2
Eyy = 3V 50" = (1/R ,0)

m

€9y = 2E24+1

The spacecraft enters the lunar influence sphere with an ini-
tial true ancmaly:

Os2m =-cos_1[(1/e24)(1/R52m—1)]

(12)
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The moon-relative true anomaly (Oshm) at exit from the lunar
influence sphere is positive, with magnitude (659,). Thus, the
moon-to-spacecraft radius vector sweeps out an angle (26g4p)
during hyperbolic passage. This rotation is clockwise, provi-
ded the scalar angular momentum (hj4) was originally of nega-
tive sign. The moon-spacecraft radius vector (Trip4) can thus
be determined by rotating the vector (rjp2) clockwise by the

angle (20g4p) -

Figure 12 shows how the new x-y components are determined for
a vector which is originally oriented at an angle (Y¥) and then
rotated clockwise through an angle (§). When computing (¥),
its quadrant must be taken into account.

Figure 12
Y VECTOR ROTATION

P= AN (Vy/Yy

vg=vcos{v-5)

v zvsin {y-8)

Also during hyperbolic passage, the relative velocity vector
is rotated. Again.provided the scalar angular momentum (hpy)
was originally of negative sign, the rotation is clockwise.
The relative velocity vector at approach (vgop) is thus rota-
ted clockwise to form the relative velocity vector at depar-
ture (v 4tp) from the lunar influence sphere. If a spacecraft
approacﬁes a central body from a distance of infinity, its
relative velocity vector is deflected by an angle

§ = 2 sin—l(l/e)
00 *

In a patched-conic condition, however, the radius at approach
is finite. Since the central body is "turned off" whenever the
spacecraft is outside the influence sphere, the velocity
turning angle will be somewhat smaller than (8.). Figure 13
relates the turning angle (§) to the eccentricity and initial
true anomaly, where the turning is limited to that which
occurs within the sphere of influence. In the case of the
lunar free-return trajectory, the spacecraft enters the lunar
influence sphere with (6=-119,8°) and (e=1.687) as indicated
by the -dot on the figure. The corresponding turning angle is
72.18°, counter-clockwise in Figure 13, but clockwise in
Figure 11 due to the orientation of the hyperbola.

The moon translates during hyperbolic passage. However, the
axis of the hyperbola remains fixed in orientation. The time

(13)
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Figure 13

VELOCITY TURNING ANGLE WITHIN THE SPHERE OF INFLUENCE
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group from perilune at point (3) to point (4) can be doubled
to obtain the total dimensionless time in the lunar influence
sphere. Then the time is dimensionalized, allowing calculation
of the change in the moon's position during hyperbolic pas-
sage. The hyperbolic anomaly (F,) corresponds to the moon-
relative true anomaly (6g4p) and eccentricity (egy).

cosh Fy =(eqy + cosBg4p)/(l+ecosbgysp)
sinh FA = Jcosh2F4 -1

F4 = 1ln(cosh Fy+sinh Fy) |

T, =(eqq sinh Fy - Fj) / [2m(ey,2-1)3/?]
ty, = (2T4)27hy,% /2

64 = Op2 t t24(de/dt)m

Given the moon's true anomaly (6,4) at the point 'where the

spacecraft leaves the lunar influence sphere, the lunar velo-

city vector in x-y components can be determined and added to

the spacecraft relative -velocity vector (Vé4m)'to obtain the

earth-relative spacecraft velocity vector:
v =V + Vv

s4 s4m mé4 (14)
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Then the earth-relative spacecraft radius (Tg4) is obtained
by adding the earth-moon radius vector (Tp4) to the moon-
spacecraft vector (Fjp4). Thus the earth-relative angular
momentum for the return trajectory is determined by the
vector cross product:

E4 = ;s4 X V34

The angular momentum is converted to scalar form (hg) and the
earth-relative velocity group, radius group, energy group,
and eccentricity for the return trip are calculated:

Vsi = V4 hév/M¢

2
s4 = Tgs Me/by

1 2
4L = -2-(VSZI- ) - (1/RS4)

e, =\/2E4 + 1

Finally, the moon's true anomaly at injection (6 1) is deter-
mined by calculating, and then dimensionalizing, the time group
from point (1) to point (2). The resulting time (tj2) is
added to the time (t93) to determine the outbound time to
perilune. At perilune, the altitude is obtained by dimen-
sionalizing the moon-relative radius group: ‘

=
|

Roqy = 1/(1+e24) at perilune

2
= RsSm h24 Aum

- 1738 km

T
s3m

Perilune altitude

T
s3m

Figure 14 presents the results of the analysis for the proper
injection conditions (vg1=10.848 km/s, 01=129.61°). As might
have been expected, the return trajectory is a mirror image

of the outbound trajectory with respect to a line passing
through the earth and the point of perilune. When the space-
craft is inside the lunar influence sphere, its earth-relative
trajectory completes one end of a distorted "figure-8" shape.
Since the axis (A) of the lunar passage hyperbola remains
parallel to the line of symmetry, the axis passes through the
earth at the point of perilume. Thus, the hyperbolic encounter
with the moon does not change the energy of the spacecraft
relative to the earth.

The major axis of the outbound elliptical transfer resides on

the x-axis. That of the return ellipse (axis B) is inclined to
the x-axis. Since the point of injection resides on the x-axis
and that of return perigee resides on axis (B), the round trip
falls just short of closing the "figure-8" shape.

(15)
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Figure 14
Injection Conditions and Symmetry
. 0of Lunar Free-Return Trajectory
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CONCLUSIONS

1.

The dimensionless orbital parameters (R,V,E, and T) offer
compact mathematical and graphical presentation of Keple-
rian orbital characteristics, as well as efficient analy-
sis of conic and patched-conic orbits. '

Numerical solution of Kepler's problem confirms the accu-
racy of the flight time predicted by the auxiliary anoma-
lies, even at near-parabolic eccentricities.

When iterative methods, including those using the auxi-
liary anomalies, are unable to converge on a solution to
Kepler's problem, numerical integration offers a reliable,
non-iterative solution.

Patched-conic orbits can be conveniently analyzed with the

aid of Cartesian vector operations on the dimensional
orbital parameters (r) and (v). '

(16)
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APPENDIX 1 AAS 87-537

DERIVATION OF CONIC-SECTION DIMENSIONLESS PARAMETERS

Conic-Section Orbit Parameters

Product of the central-body mass (M) and universal gravitational
constant (G) '

Radius from the mass center of the cental body to that of the
satellite ' '

True anomaly, or angle from closest passage (periapsis)

Magnitude of the velocity

.Direction (flight-path angle) of the velocity

Angular momentum (per unit satellite mass) about the central body
Time from periapsis to the true anomaly, ©

Orbital energy per unit satellite mass

Conic-Section Orbital Equations (Ref. 1, p.16-29, p.1l87)

1)

2)

3)

&)

5)

6)

Radius r = (h2/u)/(1+ecosd)

Velocity v =\ 2(€ +¥/x)

-1
Flight-path angle Y = cos (h/rv)

Angular momentum h = rv cos Y

Energy £ = uz(ez-l)/Zh2 = v2/2 - u/r
3 9 0 de
Time from periapsis t = (h"/u") )
0 (l+ecosB)

(18)
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Appendix 1, continued
The Dimensionless Parameters

Equations (1-6) are now manipulated to yield the dimensionless
quantities of equations (7-12), using upper-case symbols to
designate non-dimensionality:

7) Dimensionless Radius, R ru/h2 = 1/(l+ecosh)

8) Dimensionless Velocity, V vh/u = \/l+e2+2ecose
using (1,2, and 5) .

9) Flight-Path Angle, cosY = (h/rv) = 1/RV
10) Dimensionless Angular RVcos7= 1
Momentum, H
. . 2, 2 2. 2
11) Dimensionless Energy, E Eh’/u” = V/2 - 1/R = (e -1)/2
using (5) or (7,8)
s 3 0 de
12) Dimensionless Time, T tp/2Th = (1/2m) 5
from Periapsis 0 (l+ecosH)
13) Differentiate (12): d0/dT = 2T (l+ecos®) 2

Relate (T) to the auxiliary anomalies:

e + cosB
_ % © €- esin¢€ cos€ =
14) For e < 1, T= — 1l + ecos@
—
om (1-e2)3/2
sine\/ 1-e2
3 sin € = —m™M™M88 —
% tan(0/2) tan” (6/2) 1 + ecos®
15) For e =1, T = +
LT 127

coshF = cos €

w5 e sinh F - F 5
16) For e > 1, T = —_— sinhF = \/cosh F -1

3/2

27 (ez-l) F=1n (coshF + sinhF)

* .
For 6 > M, add to T the dimensionless period, 1/(1-e2)3/2

* ‘
For e=1 or e>1l, and ©® negative, use positive 6 and
take the time as negative

(19)
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APPENDIX 2
Application of the Dimensionless Groups Toward
The Iterative Solution of Kepler's Problem

Consider a satellite with velocity (v )=4 km/s at a flight-
path angle (7,)=-60° and radius (r.)=50,000 km from a central
body with gravitational parameter ?#) 400 000 km3/s2. Deter-—
mine the position and veloc1ty one hour later (subscrlpt ).

1) h = r0v0c0376 = 100,000 km /s
2) V= v h/p =1
3) R = rou/h = 2
2

- 4 — -
4) B = 3V 2)-(1/R) =
5) e = V2E+1 = 1
6) 60= 1[(l/e)(l/Ro -1)] = -120° (approaching periapsis)
7) T0= -0.275665 from Appendix 1, Eq.(1l5)

3

8) T -T_ = (-t ut/2mh> = 0.091674

1

9) To solve for the final true anomaly (81) a first guess may
' be taken from Figure 10. The guess is designated 61

91' = -110° based on T,= -0.275665 + 0.091674 = -0.183991
10) The correspohding time group, Tl' - -0.190914 from Eq.(15)
11) The desired value of Tl is T3 = -0.183991

Thus, the estimate 91 must be revised. The new guess 1is
calculated from the local derivative (d6/dT) at 91':

o' = o' + (de/dT)(T ~T4")

where d6/dT

_27(1+ecosel‘) (360°/2m) = 155.857°
-110° +155.857°[~-.183991-(-.190914)]

4
€,

-108.921°

12) Repeat steps (10) -and (11) for the following:

T,' = -0.184173  de/dT = 164.383° ;' = -108.891°
T,' = -0.183991 v~ Thus, .6, = -108.891°
13) Finally, V1=V§;e2+2ecosﬁl = 1.16295 v1=V1p/h = 4,6518 km/s

R1=1/(1+ecosel) = 1,47879 ry= thz/u = 36970 km

-1 : o o
Y, = cos‘ (I/RIVI) g'f54‘445 (20)
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APPENDIX 3
Application of Runge-Kutta
Numerical Integration to the
Solution of Kepler's Problem

Given the eccentricity (e), angular momentum (h), and initial
true anomaly (8,) in a conic orbit, the change in orbital
position during a time interval (tj-t,) can be determined by
numerical integration of the dimensionless derivative:

d6/dT = 27(l+ecos6)?

Working with degrees, rather than radians, this becomes:
d6/dT = 27(l+ecos0)2(360°/27) = 360°(l+ecoss)?

The time interval is non-dimensionalized as follows:
: _ 2 3
Tl'To = (tl—to) m</2wh

Ordinarily, the time datum is zero at periapsis. However, the
datum may arbitrarily be set to zero at the initial true ano-
maly. Then the numerical integration over (T) is terminated
when (T) reaches (Tl-To). The time group interval (T —TO) may
be broken into constant or variable increments of (A%). For a
given integration step, the gain (A6) in true anomaly is cal-
culated with the Runge-Kutta method as follows:

*
ABS = (46/dT)SAT = 360°(l+ecose,)? AT
—- 1
Gb = Sa + era
268, = (48/dT), AT = 360°(l+ecoss,)? AT
- 1
6c = 8, T 248
A8, = (48/dT)_ AT = 360°(l+ecos6 )’ AT
Gd = ea +A6C
aBy = (46/dT), AT = 360°(l+ecos6,)” AT

Finally, A8 (1/6) (a6, + 240, + 248 + A8,)

At the very first step, 65 = 6o and on the next step,
€a = 6o +A6. At the end of the very last step, 05 +A8 = 81

*
Computer evaluation of the cosine requires that (8) be

in radians.

(21)





